

UWS Academic Portal

Comparing technical debt in student exercises using test driven development, test last
and ad hoc programming
Parodi, Eugenia; Matalonga, Santiago; Macchi, Dario; Solari, Martín

Published in:
XLII Latin American Computing Conference (CLEI), 2016

DOI:
10.1109/CLEI.2016.7833380

Published: 26/01/2017

Document Version
Peer reviewed version

Link to publication on the UWS Academic Portal

Citation for published version (APA):
Parodi, E., Matalonga, S., Macchi, D., & Solari, M. (2017). Comparing technical debt in student exercises using
test driven development, test last and ad hoc programming. In XLII Latin American Computing Conference
(CLEI), 2016 (pp. 1-10). IEEE. https://doi.org/10.1109/CLEI.2016.7833380

General rights
Copyright and moral rights for the publications made accessible in the UWS Academic Portal are retained by the authors and/or other
copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with
these rights.

Take down policy
If you believe that this document breaches copyright please contact pure@uws.ac.uk providing details, and we will remove access to the
work immediately and investigate your claim.

Download date: 14 Jul 2020

https://doi.org/10.1109/CLEI.2016.7833380
https://myresearchspace.uws.ac.uk/portal/en/publications/comparing-technical-debt-in-student-exercises-using-test-driven-development-test-last-and-ad-hoc-programming(868cf869-e1e6-4e60-9bb1-b34e9135b775).html
https://doi.org/10.1109/CLEI.2016.7833380

Comparing Technical Debt in Student Exercises

Using Test Driven Development , Test Last, and Ad

Hoc Programming

Eugenia Parodi

PEDECIBA Informática

Montevideo, Uruguay

eugeniaparodi@gmail.com

Santiago Matalonga, Darío Macchi, Martín Solari

Facultad de Ingeniería

Universidad ORT Uruguay

Montevideo, Uruguay

{smatalonga,macchi}@uni.ort.edu.uy,

martin.solari@ort.edu.uy

Abstract—Technical Debt is a metaphor that explains a

phenomenon that occurs in software development when

programmers are faced with trade-off decisions (usually ship first

vs. quality assurance). This work analyses the amount of

technical debt incurred by undergraduate students using

different coding techniques. This observational study uses source

code from seventy-five students. We provided students with

similar exercises to compare techniques by measuring with static

code analyzers (Sonar, FindBugs). The techniques are TDD, Test

Last, and ad hoc programming. Our results could not find a

statistically significant difference of technical debt incurred by

each development practices. Nonetheless, with both tools ad-hoc

programming measures less technical debt than TDD, and TDD

measures less than Test Last. Furthermore, we observed that the

two measurement tools outputs are not statistically correlated.

Finally, we discuss implications for the research of technical debt

stemming from our observations.

Keywords—Technical debt; TDD; Test First; Lest Last;

I. INTRODUCTION

Technical debt is a metaphor introduced by Cunningham
(1992) that explains how "shipping first" incurs debt. For
instance, in the case of shipping new buggy functionality.
Developers can either push the release date forward or ship the
new functionality without extensive testing. We say that they
are incurring in Technical debt if the developers take the later
decision [1]. Technical Debt is a topic that has been getting
considerable attention in the field of software engineering over
the last years[2]. Technical Debt has become relevant to the
software engineering community due its ability to explain the
hidden costs of poor quality [3]. For instance, the Gartner
Group estimates that the global Technical Debt in the year
2010 was around 500 million dollars and could be doubled in
five years [4].

This paper presents a comparison of Technical Debt
involving undergraduate students from Universidad ORT
Uruguay. These students were enrolled in courses in software
engineering in the engineering school and the technical school.
A total of 75 subjects participated in the observation, using

three different coding technique: Test Driven Development,
Test Last, and ad-hoc programming.

Test Driven Development (acronym TDD) is a software
development practice in which automated test cases are
written before the functionality development [5]. Test Last,
encompass the subject who performed extensive unit testing,
but who did not necessary applied the TDD principles. Finally,
ad-hoc programming represents those subjects who did not
follow a specific coding approach.

Based on the principles of each technique, our hypothesis
was that the software developed applying TDD would have
less Technical Debt than those developed with Test Last and
ad hoc programming. For the purposes of the research, TD
was measured using two static code analysis tools (Findbugs
and Sonar). Measuring code technical debt with static code
analyzer tools is a standard practice in TD research [3].

The results could not find statistically significant
differences in the amount of Technical Debt incurred by each
technique. A retrospective analysis of the results and the
experimental design hits at several confounding factors that
could explain our results. First of all, training given to students
was not enough to support higher abstraction techniques like
TDD. The adoption of TDD often requires a cultural change of
each developer, as it presents a different way to write and
design software [6]. Secondly, the coding tasks given to the
students were similar (ACM programming exercises) they
were not equivalent. As a result, this empirical observation is
not a controlled experiment, and variations in the exercise can
account for the variations in the results.

On the other hand, our results also found that the measures
of technical debt used in this study do not exhibit a monotonic
relationship. The selected tools for measuring technical debt
are those commonly used in the literature. To the best of our
knowledge, there is no formal study comparing the output of
these tools. Though both Sonar and Findbugs are different
measures of Technical Debt, they both measure the same
attribute. The absence of a monotonic relationship could have
implications for the way code technical debt is currently

understood. Nonetheless, further experimental research is
needed to confirm or deny this observation.

The rest of this article is structured as follows. Section II
presents the study objectives and setting. Section III presents
the data analysis. Section IV presents our answers to the
research questions, including a discussion of the confounding
factors that could have had an influence on the results. Threats
to validity are discussed in Section V. A review of the current
literature on measuring Technical Debt, and of the techniques
employed in this empirical observation is presented in section
VI. Finally, in Section VII concludes this article with a
reflection about the results obtained and future research
directions.

II. STUDY OBJECTIVES AND SETTING

This section describes the study objectives and settings.

Objective: Evaluate how different techniques introduce

Technical Debt by looking at the source code.

Work hypothesis: Software developed using TDD will incur

in less Technical Debt than those developed with Test last or

ad-hoc techniques.

A. Description of the participants

All the selected participants were undergraduate students
from Universidad ORT Uruguay. Based on each background,
we identified the following groups:

The first two groups included students enrolled in
technical degrees. They were trained in unit test using JUnit
and in Test Driven Development. These students had four
courses on software development through degree syllabus.
Furthermore, for the purpose of this experience, they received
a 12-hour workshop (spread over four weeks). The group is
split into those who decided to apply TDD and those who
decided to use unit testing but did not apply TDD – which we
labeled Test Last. We will call each of these techniques TDD
and TL respectively.

The third group included students who were training for
the annual ACM Programming Concourse at the same
university (referenced with the name ACM). They are
referenced as ad-hoc programming since no methodology is
imposed on them. Students who enroll in the programming
training come from the first and second semester with one or
two programming courses done until that moment.

B. Description of the programming exercises utilized

All subjects participating in this study were asked to solve
exercises taken from acmsolver.com. Thereby giving
reasonable confidence that students were faced with similar
challenges, though it introduced variation in the observation
(see section V.C).

These exercises were translated into Spanish by the
researchers. It is worth to note that for the TDD and TL
groups, the exercise is being used to grade the students.
Student grading can be a threat to the experimental design, as
it has been documented in [7].

C. Description of the treatment

TDD and TL first students received the same training. A 4-
week workshop was designed to introduce students to
automatic unit testing with JUnit, refactoring, and TDD.
Students were expected to code training exercises in each of
the weeks to develop their skills. For the final exercise, which
was graded by the instructors, students were allowed to choose
if they wanted to try TDD and those who had used TL.

On the other hand, ad hoc participated in a workshop
designed to train them for the regional ACM programming
competition. Unit testing with JUnit is not part of the syllabus
of this workshop.

D. Data Collection Procedure

The instructors collected the source code from the TDD
and TL groups. These instructors provided the classifications
of subjects into TDD and TL before handing the source code
to the authors of this articles. Each subject was assigned a
sequential identifier.

Source code from ad hoc programming was downloaded
directly from the training platform for the ACM competition
from Universidad ORT Uruguay. From the available pool of
training students, one source code exercise was selected and
downloaded.

We set up Findbugs Eclipse plug-in and loaded each of the
projects to obtain the Technical Debt measure. Likewise, we
installed an instance of Sonar Server, and each of the source
code was examined to obtain the Technical Debt measure (the
resulting data set is presented in Appendix –Data Set).

E. Hypothesis and variables

As we have mentioned, our aim with this observation was
to confirm that source code built using TDD had more quality
than source code built using other techniques. The proxy for
quality in this observation is Technical Debt measured by two
different tools: Findbugs and Sonar. Therefore, our null
hypothesis is:

H0: Subjects using TDD have the same code quality than
those using TL or ad hoc programming (measured as the total
number of defects identified by Findbugs / Sonar).

The variables under analysis are the number of defects
identified by each tool. Though both tools classify defects by
severity, for the purpose of this observation, only the total
number of identified defects is considered.

III. DATA ANALYSIS

Overall, 75 subjects were observed in this experience. Raw
data from the observation is presented in Appendix –Data Set.

A. Descriptive statistics

The following table presents the summary of the obtained

data, and also presented as a graph in Figure 1 and Figure 2.

 Number of

subjects

Find bugs Sonar

Median Std

Dev

Median Std

Dev

Ad_hoc 32 2 1,56 14 8,0

Test Last 32 3 2,44 85 103

TDD 11 3 2,23 57 98,84

Table 1: Descriptive statistics of collected data

Figure 1: Descriptive statistics graph for Findbugs

Figure 2: Descriptive statistics graph for Sonar

B. Analysis of hypothesis

In order to evaluate our work we have decomposed our
alternative hypotheses into:

H1f: There is a difference among the observed groups
regarding Technical Debt as measured by Findbugs.

H1s: There is a difference among the observed groups
regarding Technical Debt as measured by Sonar.

In order to evaluate this two alternative hypothesis, we
applied the Kruskall-Wallis H test. Table 2 presents the
evaluation of the general assumptions of the selected statistical
method.

Assumption Evaluation

The dependent

variable is ordinal

Yes, see section Hypothesis and

variables

The independent

variable consists of

two or more

categorical groups

Yes, these are represented by the

coding technique (TDD, TL, ad hoc).

There is

independence of

observation

Assumed true. As part of the

University policies, students’

exercises are checked for plagiarism.

Table 2: General Assumptions for the Kruskall-Wallis H Test

The remainder assumptions of the Kruskall-Wallis H Test
are dependent on the data and are reviewed in each of the
following subsections.

1) Evaluation of H1f
A Kruskall-Wallis H Test was run to determine if there

were differences in the accrued technical debt as measured by
Findbugs for TDD, TL, and ad hoc programming. The
distributions for the accrued Technical Debt were not similar
for all groups as visually assessed through box plots (see
Figure 3). The distributions were statistically significant
between groups with X2(2) = 10,991, p=0,004.

Figure 3: Results of Findbugs Kruskall-Wallis H Test

Despite not having statistical significance, an observation

of the ranks hints that TL has more technical debt (47) than
TDD (40), and finally ad hoc with 29. All values declared are
mean ranks see Table 4.

Group N Mean Rank

Ad hoc 32 29

TDD 12 39

TL 32 47

Table 3: Mean rank for Findbugs by group

1) Evaluation of H1s

A Kruskall-Wallis H Test was run to determine if there
were differences in the accrued technical debt as measured by
Sonar for TDD, TL, and Ad-hoc. The distributions for the
accrued technical debt were not similar for all groups as
visually assessed through box plots (see Figure 4). The
distributions were statistically significant between groups with
X2(2) = 53,403, p=0,000.

Figure 4: Results of Sonar Kruskal-Wallis Test

In spite of not having statistical significance, an
observation of the ranks hints that TL has more technical debt
(47) than TDD (40), and finally ad hoc with 29. All values
declared are mean ranks see Table 4.

Group N Mean Rank

Ad hoc 32 17

TDD 12 49

TL 32 56

Table 4: Mean rank for Sonar by group

C. Other analysis

In addition to the research objectives, there is the

possibility to analyze if there is a relationship between the

measures of technical debt provided by two different tools. To

evaluate this relationship is important because both code

analysis tools are used to measure technical debt in the

literature (see Section VI.A). Therefore, it is expected that

there is a monotonic relationship between them.

A Spearman’s rho was applied to test for correlation among

the variables. The results could not confirm a significant

correlation between them (rho = 0,223). Figure 4 presents a

scatter plot to observe that this linear correlation is not present

in the data. The implication for technical debt research of this

result is presented in the section IV.D).

Figure 5: Sonar x Findbugs scatterplot

IV. ANSWER TO RESEARCH QUESTIONS AND INTERPRETATION OF

RESULTS AND

Regarding the main objective of this research, to confirm
that code produced using TDD had less technical debt than
code produced using other techniques. This research could not
support this hypothesis. In spite of the amount of participants
involved in the observation (75 undergraduate students), the
analysis did not yield statistically significant results.

Nevertheless, it is interesting to note that ordering the
techniques by the number of issues reported by both tools
shields the same order (see Table 3 and Table 4) for the
techniques. This is, ad-hoc produces fewer issues than TDD,
which produces fewer issues this ad-hoc produces than Test
last. This would hint at a relationship between the three
techniques. Even more so, since the measures appear
unrelated.

The reported literature on quality improvement using TDD
has mixed results (see Section Results from other comparisons
involving TDD). Nonetheless, and evaluation of our research
design shows that there are several confounding factors that
must be taken into account when observing our results.

A. Cognitive complexity of TDD

Arguably, TDD is the most cognitively demanding the
coding practice applied by the subjects of this empirical
observation. Evidence of this is the comparatively low number
of subjects that applied the technique (12 out of 75). Both
TDD and TL subject received equal training, and yet only 12
out of 44 decided to apply the technique in the final exercise
of the course.

No operationalization of the technique was required for the
subjects. This lack of operationalization is the likely source of
the spread of the results observed in the range of the issues
detected by the measurement tools. Further research, must
introduce an operationalization of the compared coding
techniques in order to reduce variations, and increase
confidence that the subjects are correctly applying the
assigned technique.

B. Error in the assignments of subjects groups (TDD and TL)

As it was mentioned in section II.A, TDD and TL came
from students taking the same course in a technical degree
setting. Division into groups was based on the instructor
judgment on the technique applied. The instructors judgment
liable to selection bias and may be a source of the variation
seen in the results. It is also a possible explanation for the lack
of statistically significant results.

C. Effect of code size on Technical Debt

Another aspect that was not taken into account during data
collection was the length of code involved in each group. It is
likely that code also has an impact on the amount if issues
identified by these tools. As code that is more sizable is likely
to have more issues. We revisited the source code to add this
data to the dataset; the summary is presented in Table 5 and
Figure 6.

Code
Technique

Number
of Cases

Median
(LOC)

Standard
Deviation

Ad hoc 32 58,5 178,8

Test First 32 1153,5 904,4

TDD 11 291 25,8

Table 5: Summary of descriptive statistics for LOC of

subjects' exercises

Figure 6: Descriptive statistics for LOC

Figure 6 show that ad hoc exercises have fewer LOC than
TDD exercises. Moreover, that TDD exercises have less LOC
than test first exercises. Which shields the same order than the
observation of accrued technical debt (see section IV). Our
experimental design prevents us from further analyzing this
observation.

D. Immaturity of Technical Debt measures

Technical debt is a metaphor which has been successfully
applied to understand events that occur during software

development. For that matter when working with code
technical debt, the de-facto standard is to use the static
checking tools as a measure of technical debt. Nonetheless,
our observation showed that there is not relationship – or at
least not linear relationship – between the two measures of
technical debt.

In theory, they are both measuring the same attribute from
the same entity. Both are tools for measuring Technical debt
(attribute) from the entity source code. Therefore, a monotonic
relation is to be expected of both measures. If an entity has
more technical debt, this should be true regardless of the
measurement scale. Nevertheless, our results could not
confirm the existence of a monotonic relationship between the
two measures (see Figure 4). This observation opens new
research questions towards the validity of using these
measures as a proxy for technical debt.

V. THREATS TO VALIDITY

This section discusses a set of threats to the validity [8] of the

results discussed in this study.

A. Statistical significance

 The number of subjects per group was not balanced.
However, care was taken in the application of the statistical
tests (we abide by variable type restrictions and the
assumptions of each of the applied statistical methods). Our
results failed to show statistical significance for the test
applied. Therefore, all conclusions are based on the
researcher’s judgment – which is prone to a threat in
generalization.

B. Different goals between each group

An aspect that can challenge the validity of the observation
(construct validity) is that students involved in ad-hoc
programming groups had different motivation that students
involved in TDD or TL groups.

On one hand, the students which we label as ACM were
willingly participating in training seminars for the ACM
programming contest. They are not graded for their exercises,
and their main goal is to provide source code that fulfills the
functional specification in the shortest time possible.

On the other hand, students which we labeled as TDD or
TL, were participating in a curricular course of their degree
and were graded for the assignment of a source code
programming exercise.

C. Experimental design

Throughout this paper, we have labeled this work as an
empirical observation of the behavior of technical debt in
undergraduate projects. The researchers had no control over
the instrumentation or the assignments of subjects to groups.
To make the results more definite, a different type of
experimental design must be made to block several of the
confounding factors that have been discussed in this paper.

VI. RELATED WORK

A. Measuring technical debt

Technical debt research has become a stronghold for the

development of empirical research in software engineering.

This observation was consolidated in [2], where a summary of

empirical results in technical debt research is presented. As a

result, a driver of technical debt research has been the need to

reliable measurements. According to the reviewed literature,

most of the authors discussed methods to determine technical

debt by analyzing the source code [3]. These approaches were

based on the cohesion and coupling measurement among

others code indicators of each component. To the best of our

knowledge, Findbugs and Sonar are the most used ones in the

literature.

Other measures of technical debt have been proposed that

do not rely on source code analysis. For instance in [9], Nord

et al. describe an empirical model based on the cost of

implementation and rework of alternative and conflicting

architectural solutions.

, in an ongoing system development project, by

determining the propagation metric [10], no methodology was

defined in order to manage and monitor the debt across the

software development.

Finally, Guo et al. [11] presented a general methodology,

to deal with technical debt during the development life cycle.

This framework defines three main activities that were

executed during the whole SLDC phase, in order to create an

incremental technical debt steps: Identification, measurement

and monitoring. It also suggests four elements as sources of

technical debt:

 Design debt: defined as any anomaly in the source

code and/or documentation that could decrease the

maintainability of the system.

 Defect debt: known defects not yet fixed.

 Testing debt: identified as planned tests that were not

executed.

 Documentation debt: when the product’s

documentation is not up to date.

Though the evidence of the application of these model

relies on source code measures for technical debt.

B. Overview of Development techniques

Test Last programming, also known as Test-Last
Development or TLD is a popular testing model, with
developers focused on programming functionalities before
testing them. It popularity can be related to waterfall software
development model popularity where it was the only testing
model that made sense (testing phase is the last one in the
waterfall).

Test Driven Development (acronym TDD) is a software
development practice in which automated test cases are
written before the functionality development [5]. It is
considered part of the eXtreme Programming methodology
[12] and a design flow paradigm with test cases acting as a
starting point and central elements throughout the whole
design process [13]. In TDD, test cases are specified first
(challenging traditional way [14][15][16]), and, since no
implementation is available, they will initially fail. Based on
error messages from failing test cases, the implementation
grows incrementally until all test cases pass eventually [17].

TDD technique not only encourages programmers to write
code that can be easily tested but also requires an open mind
and discipline. However, the test part of TDD name has lead
to many misunderstandings (mostly in newcomers) due the
belief that only implies testing and not analysis nor design.
TDD development has a sharp learning curve. It requires
advanced skills in order to be correctly implemented, because
of how the paradigm forces developers to think and design test
cases before implementing an unfamiliar functionality [18].

C. Results from other comparisons involving TDD

In the last ten years, there have been several scientific
studies on TDD. The very large quantity and maturity of
results have made possible the realization of secondary studies
(systematic reviews) [19][5][20]; which are a good way to
summarize and interpret quantitative results of a collection of
individual studies over a specific topic.

Empirical studies on industrial and academic projects
report improvements in quality, in some cases significant and
in others not so much [5]. On external quality (perceived by
the user as the satisfaction of use, flexibility and efficiency
attributes) there are reports of simple improvements [21],
some noticeable improvements or directly no improvement
[19]. On the internal quality (how the code is developed, ease
of correction, adaptation, and expansion), it is ensured that it
increases [21]. On productivity, there are reports that range
from indeterminate results [19] [21], that it worsens [22] and
even that TDD improves productivity [23]. Regarding the
impact on the development effort, the reports go from
indeterminate results to improvements thanks to the use of
TDD [5]. Finally, a survey of process improvement practices
puts TDD as the second practice with the greatest impact on
the success of a project (only after code inspection as the first
one) [24]. All this lack of conclusive results and nuances about
its uses are issues that still occupy many researchers.

Like other empirical experiments, the validity of our
results are based on a large set of subjects that were not
randomly selected; they were aware that TDD and Testing-
Last must be applied. We hope that our focus on the
comparison between both programming paradigms will assist
others in order to get a better view on how the adopted
technology incurs TD.

VII. CONCLUSIONS

Technical Debt is a metaphor for explaining events that
happen during the development of software. TDD has proven
a viable way to produce software, the hype around it signals

that better quality and better readable software can be obtained
when using these techniques [6]. Nonetheless, empirical
studies of code quality resulting from applying TDD is
ambiguous on the effects of the technique. This study provides
another source of contrast since the expected quality
improvement could not be observed from the data under study.

This manuscript has presented an empirical evaluation of
TDD, TL and ad hoc programming techniques. We reviewed
source code from programming assignments from 75 different
students. The goal of this work was to evaluate if code
produced with TDD had fewer Technical Debt than code
produced using TL and ad ho programming techniques.

Technical Debt was measured using static code analysis
tools (Sonar and Findbugs), which are standard tools for
measuring Technical Debt in the community.

Our results could not support the working hypothesis, as
no statistically significant difference was found in the
observed source code. Nonetheless, several interesting
affirmation can be made:

 In spite of not achieving statistical significance, the
order in which the observed techniques produced
Technical Debt remained the same in both
measurement tools. The order is, from lowest to
greatest: ad hoc TDD test last.

 There is no significant linear relationship between the
two measurement tools.

As we have discussed, there are other confounding
variables which our empirical study design cannot block in
order to generalize the results. Specifically, training and
motivation of the subjects in the evaluated techniques is a big
source of variation in our study. In addition to this, our results
show that code size is also a source of variation and it’s likely
to have more effect on Technical Debt than coding technique.

Future work needs to involve the study design to evaluate
the research lines opened by this empirical observation. Static
code analysis tools must be thoroughly studied in order to
evaluate if they represent meaningful proxies for Technical
Debt. In this study, we have only counted the total number of
identified defects. Both tools classify the defects by severity.
The analysis in this paper should be extended to accommodate
for the severity of the identified defects.

Furthermore, the observation of students needs to evolve to
a controlled experiment design reducing the variation of
confounding factors to better observe each technique.

REFERENCES

[1] W. Cunningham, “Technical Debt,” Cut. It J., vol. 23,

pp. 1–44, 2010.

[2] F. Shull, D. Falessi, C. Seaman, M. Diep, and L.

Layman, “Technical Debt: Showing the Way for

Better Transfer of Empirical Results,” in Perspectives

on the Future of Software Engineering: Essays in

Honor of Dieter Rombach, J. Münch and K. Schmid,

Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,

2013, pp. 179–190.

[3] A. Villar and S. Matalonga, “Definiciones y tendencia

de deuda técnica: Un mapeo sistemático de la

literatura,” in Memorias de la XVI Conferencia

Iberoamericana de Ingeniería de Software CIbSE

2013, 2013, pp. 33–46.

[4] Gartner, “Gartner Estimates Global ‘IT Debt’ to Be

$500 Billion This Year, with Potential to Grow to $1

Trillion by 2015.” .

[5] R. Jeffries and G. Melnik, “Guest Editors’

Introduction: TDD--The Art of Fearless

Programming,” IEEE Softw., vol. 24, no. 3, 2007.

[6] D. Janzen and H. Saiedian, “Test-driven learning in

early programming courses,” ACM SIGCSE Bulletin,

vol. 40. p. 532, 2008.

[7] N. Juristo and A. M. Moreno, “Basics of Software

Engineering Experimentation,” Analysis, vol. 5/6, p.

420, 2001.

[8] C. Wohlin, M. Höst, P. Runeson, M. C. Ohlsson, B.

Regnell, and A. Wesslén, Experimentation in software

engineering: an introduction. Norwell, Massachusetts:

Kluwer Academic Publishers, 2000.

[9] R. L. Nord, I. Ozkaya, P. Kruchten, and M. Gonzalez-

Rojas, “In Search of a Metric for Managing

Architectural Technical Debt,” 2012 Jt. Work.

IEEE/IFIP Conf. Softw. Archit. Eur. Conf. Softw.

Archit., pp. 91–100, Aug. 2012.

[10] R. Marinescu, “Detection strategies: Metrics-based

rules for detecting design flaws,” in IEEE

International Conference on Software Maintenance,

ICSM, 2004, pp. 350–359.

[11] Y. Guo, R. O. Spínola, and C. Seaman, “Exploring the

costs of technical debt management – a case study,”

Empir. Softw. Eng., vol. 21, no. 1, pp. 159–182, Feb.

2016.

[12] K. Beck, Extreme Programming Explained: Embrace

Change, no. c. Addison-Wesley Professional, 1999.

[13] M. Diepenbeck, M. Soeken, D. Grose, and R.

Drechsler, “Behavior Driven Development for circuit

design and verification,” in 2012 IEEE International

High Level Design Validation and Test Workshop

(HLDVT), 2012, pp. 9–16.

[14] K. Beck, Test Driven Development: By Example.

2002.

[15] H. Erdogmus, M. Morisio, and M. Torchiano, “On the

effectiveness of the test-first approach to

programming,” IEEE Trans. Softw. Eng., vol. 31, no.

3, pp. 226–237, 2005.

[16] D. Janzen and H. Saiedian, “Test-driven development

concepts, taxonomy, and future direction,” Computer

(Long. Beach. Calif)., vol. 38, no. 9, pp. 43–50, 2005.

[17] D. Sundmark and S. Punnekkat, “Impact of Test

Design Technique Knowledge on Test Driven

Development: A Controlled Experiment,” pp. 138–

152, 2012.

[18] J. Buchan, L. Li, and S. G. MacDonell, “Causal

factors, benefits and challenges of test-driven

development: Practitioner perceptions,” in

Proceedings - Asia-Pacific Software Engineering

Conference, APSEC, 2011, pp. 405–413.

[19] Y. Rafique and V. B. Mǐsí, “The effects of test-driven

development on external quality and productivity: A

meta-analysis,” IEEE Trans. Softw. Eng., vol. 39, no.

6, pp. 835–856, 2013.

[20] F. Shull, G. Melnik, B. Turhan, L. Layman, M. Diep,

and H. Erdogmus, “What do we know about test-

driven development?,” IEEE Softw., vol. 27, no. 6, pp.

16–19, 2010.

[21] C. Desai, D. Janzen, and K. Savage, “A survey of

evidence for test-driven development in academia,”

ACM SIGCSE Bull., vol. 40, no. 2, p. 97, 2008.

[22] T. Burak, L. Layman, M. Diep, H. Erdogmus, and F.

Shull, “How Effective Is Test-Driven Development?,”

in Making Software: What Really Works, and Why We

Believe It, no. 12, 2010, pp. 207–220.

[23] a. Gupta and P. Jalote, “An Experimental Evaluation

of the Effectiveness and Efficiency of the Test Driven

Development,” First Int. Symp. Empir. Softw. Eng.

Meas. (ESEM 2007), no. Ccd, pp. 285–294, 2007.

[24] K. El Emam, “The ROI from Software Quality,” Cut.

Consort. Rep., vol. 5., p. 20, 2004.

VIII. APPENDIX –DATA SET

Subject Technical Debt

#FindBugs #Sonar

TDD_Subject 3 1 53

TDD_Subject 4 5 55

TDD_Subject 5 1 159

TDD_Subject 9 7 61

TDD_Subject 11 6 78

TDD_Subject 19 1 30

TDD_Subject 20 1 119

TDD_Subject 21 2 56

TDD_Subject 43 3 41

TDD_Subject 44 6 57

TDD_Subject 45 3 70

TDD_Subject 46 3 523

Table 1: TDD

Subject Technical Debt

FindBugs #Sonar

TL_Subject 1 5 34

TL_Subject 2 2 32

TL_Subject 6 1 138

TL_Subject 7 2 31

TL_Subject 8 2 32

TL_Subject 18 9 31

TL_Subject 22 3 89

TL_Subject 23 2 138

TL_Subject 24 2 124

TL_Subject 25 8 197

TL_Subject 26 3 412

TL_Subject 27 9 261

TL_Subject 28 3 97

TL_Subject 29 2 359

TL_Subject 30 2 262

TL_Subject 31 2 97

TL_Subject 32 2 357

TL_Subject 33 5 62

TL_Subject 34 4 60

TL_Subject 35 2 71

TL_Subject 36 3 81

TL_Subject 37 7 132

TL_Subject 38 5 78

TL_Subject 39 5 117

TL_Subject 40 1 204

TL_Subject 41 1 45

TL_Subject 42 7 51

TL_Subject 51 6 47

TL_Subject 52 3 78

TL_Subject 53 8 89

TL_Subject 54 5 74

TL_Subject 55 6 65

Table 2:TL

Subject Technical Debt

FindBugs #Sonar

ACM_Subject 1 0 19

ACM_Subject 2 0 18

ACM_Subject 3 1 20

ACM_Subject 5 1 27

ACM_Subject 6 2 17

ACM_Subject 7 0 35

ACM_Subject 10 2 7

ACM_Subject 11 1 29

ACM_Subject 12 3 13

ACM_Subject 13 3 16

ACM_Subject 14 3 34

ACM_Subject 15 4 10

ACM_Subject 16 4 15

ACM_Subject 17 1 11

ACM_Subject 18 3 8

ACM_Subject 19 1 13

ACM_Subject 21 4 12

ACM_Subject 22 3 9

ACM_Subject 24 6 26

ACM_Subject 25 2 7

ACM_Subject 26 1 9

ACM_Subject 27 2 12

ACM_Subject 28 1 20

ACM_Subject 29 2 15

ACM_Subject 30 1 8

ACM_Subject 31 3 8

ACM_Subject 32 6 7

ACM_Subject 33 2 10

ACM_Subject 34 0 24

ACM_Subject 35 1 23

ACM_Subject 36 1 15

ACM_Subject 37 2 6

Table 3: ACM

.

