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Abstract—Technical Debt is a metaphor that explains a 

phenomenon that occurs in software development when 

programmers are faced with trade-off decisions (usually ship first 

vs. quality assurance). This work analyses the amount of 

technical debt incurred by undergraduate students using 

different coding techniques. This observational study uses source 

code from seventy-five students. We provided students with 

similar exercises to compare techniques by measuring with static 

code analyzers (Sonar, FindBugs). The techniques are TDD, Test 

Last, and ad hoc programming. Our results could not find a 

statistically significant difference of technical debt incurred by 

each development practices. Nonetheless, with both tools ad-hoc 

programming measures less technical debt than TDD, and TDD 

measures less than Test Last. Furthermore, we observed that the 

two measurement tools outputs are not statistically correlated. 

Finally, we discuss implications for the research of technical debt 

stemming from our observations. 

Keywords—Technical debt; TDD; Test First; Lest Last; 

I.  INTRODUCTION 

Technical debt is a metaphor introduced by Cunningham 
(1992) that explains how "shipping first" incurs debt. For 
instance, in the case of shipping new buggy functionality. 
Developers can either push the release date forward or ship the 
new functionality without extensive testing. We say that they 
are incurring in Technical debt if the developers take the later 
decision [1]. Technical Debt is a topic that has been getting 
considerable attention in the field of software engineering over 
the last years[2]. Technical Debt has become relevant to the 
software engineering community due its ability to explain the 
hidden costs of poor quality [3]. For instance, the Gartner 
Group estimates that the global Technical Debt in the year 
2010 was around 500 million dollars and could be doubled in 
five years [4].  

This paper presents a comparison of Technical Debt 
involving undergraduate students from Universidad ORT 
Uruguay. These students were enrolled in courses in software 
engineering in the engineering school and the technical school. 
A total of 75 subjects participated in the observation, using 

three different coding technique: Test Driven Development, 
Test Last, and ad-hoc programming.  

Test Driven Development (acronym TDD) is a software 
development practice in which automated test cases are 
written before the functionality development [5]. Test Last, 
encompass the subject who performed extensive unit testing, 
but who did not necessary applied the TDD principles. Finally, 
ad-hoc programming represents those subjects who did not 
follow a specific coding approach. 

Based on the principles of each technique, our hypothesis 
was that the software developed applying TDD would have 
less Technical Debt than those developed with Test Last and 
ad hoc programming. For the purposes of the research, TD 
was measured using two static code analysis tools (Findbugs 
and Sonar). Measuring code technical debt with static code 
analyzer tools is a standard practice in TD research [3]. 

The results could not find statistically significant 
differences in the amount of Technical Debt incurred by each 
technique. A retrospective analysis of the results and the 
experimental design hits at several confounding factors that 
could explain our results. First of all, training given to students 
was not enough to support higher abstraction techniques like 
TDD. The adoption of TDD often requires a cultural change of 
each developer, as it presents a different way to write and 
design software [6]. Secondly, the coding tasks given to the 
students were similar (ACM programming exercises) they 
were not equivalent. As a result, this empirical observation is 
not a controlled experiment, and variations in the exercise can 
account for the variations in the results. 

On the other hand, our results also found that the measures 
of technical debt used in this study do not exhibit a monotonic 
relationship. The selected tools for measuring technical debt 
are those commonly used in the literature. To the best of our 
knowledge, there is no formal study comparing the output of 
these tools. Though both Sonar and Findbugs are different 
measures of Technical Debt, they both measure the same 
attribute. The absence of a monotonic relationship could have 
implications for the way code technical debt is currently 



understood. Nonetheless, further experimental research is 
needed to confirm or deny this observation. 

The rest of this article is structured as follows. Section II 
presents the study objectives and setting. Section III presents 
the data analysis. Section IV presents our answers to the 
research questions, including a discussion of the confounding 
factors that could have had an influence on the results. Threats 
to validity are discussed in Section V. A review of the current 
literature on measuring Technical Debt, and of the techniques 
employed in this empirical observation is presented in section 
VI. Finally, in Section VII concludes this article with a 
reflection about the results obtained and future research 
directions. 

II. STUDY OBJECTIVES AND SETTING 

This section describes the study objectives and settings. 

 

Objective: Evaluate how different techniques introduce 

Technical Debt by looking at the source code. 

 

Work hypothesis: Software developed using TDD will incur 

in less Technical Debt than those developed with Test last or 

ad-hoc techniques. 

A. Description of the participants 

All the selected participants were undergraduate students 
from Universidad ORT Uruguay. Based on each background, 
we identified the following groups: 

The first two groups included students enrolled in 
technical degrees. They were trained in unit test using JUnit 
and in Test Driven Development. These students had four 
courses on software development through degree syllabus. 
Furthermore, for the purpose of this experience, they received 
a 12-hour workshop (spread over four weeks). The group is 
split into those who decided to apply TDD and those who 
decided to use unit testing but did not apply TDD – which we 
labeled Test Last. We will call each of these techniques TDD 
and TL respectively. 

The third group included students who were training for 
the annual ACM Programming Concourse at the same 
university (referenced with the name ACM). They are 
referenced as ad-hoc programming since no methodology is 
imposed on them. Students who enroll in the programming 
training come from the first and second semester with one or 
two programming courses done until that moment.  

B. Description of the programming exercises utilized 

All subjects participating in this study were asked to solve 
exercises taken from acmsolver.com. Thereby giving 
reasonable confidence that students were faced with similar 
challenges, though it introduced variation in the observation 
(see section V.C). 

These exercises were translated into Spanish by the 
researchers. It is worth to note that for the TDD and TL 
groups, the exercise is being used to grade the students. 
Student grading can be a threat to the experimental design, as 
it has been documented in [7]. 

C. Description of the treatment 

TDD and TL first students received the same training. A 4-
week workshop was designed to introduce students to 
automatic unit testing with JUnit, refactoring, and TDD. 
Students were expected to code training exercises in each of 
the weeks to develop their skills. For the final exercise, which 
was graded by the instructors, students were allowed to choose 
if they wanted to try TDD and those who had used TL. 

On the other hand, ad hoc participated in a workshop 
designed to train them for the regional ACM programming 
competition. Unit testing with JUnit is not part of the syllabus 
of this workshop. 

D. Data Collection Procedure 

The instructors collected the source code from the  TDD 
and TL groups. These instructors provided the classifications 
of subjects into TDD and TL before handing the source code 
to the authors of this articles. Each subject was assigned a 
sequential identifier. 

Source code from ad hoc programming was downloaded 
directly from the training platform for the ACM competition 
from Universidad ORT Uruguay. From the available pool of 
training students, one source code exercise was selected and 
downloaded. 

We set up Findbugs Eclipse plug-in and loaded each of the 
projects to obtain the Technical Debt measure. Likewise, we 
installed an instance of Sonar Server, and each of the source 
code was examined to obtain the Technical Debt measure (the 
resulting data set is presented in Appendix –Data Set). 

E. Hypothesis and variables 

As we have mentioned, our aim with this observation was 
to confirm that source code built using TDD had more quality 
than source code built using other techniques. The proxy for 
quality in this observation is Technical Debt measured by two 
different tools: Findbugs and Sonar. Therefore, our null 
hypothesis is: 

H0: Subjects using TDD have the same code quality than 
those using TL or ad hoc programming (measured as the  total 
number of defects identified by Findbugs / Sonar). 

The variables under analysis are the number of defects 
identified by each tool. Though both tools classify defects by 
severity, for the purpose of this observation, only the total 
number of identified defects is considered.  

III. DATA ANALYSIS 

Overall, 75 subjects were observed in this experience. Raw 
data from the observation is presented in Appendix –Data Set.  

A. Descriptive statistics 

The following table presents the summary of the obtained 

data, and also presented as a graph in Figure 1 and Figure 2. 
 

 



 Number of 

subjects 

Find bugs Sonar 

Median Std 

Dev 

Median Std 

Dev 

Ad_hoc 32 2 1,56 14 8,0 

Test Last 32 3 2,44 85 103 

TDD 11 3 2,23 57 98,84 

Table 1: Descriptive statistics of collected data 

 

 
Figure 1: Descriptive statistics graph for Findbugs 

 

 
Figure 2: Descriptive statistics graph for Sonar 

B. Analysis of hypothesis 

In order to evaluate our work we have decomposed our 
alternative hypotheses into: 

 

H1f: There is a difference among the observed groups 
regarding Technical Debt as measured by Findbugs. 

H1s: There is a difference among the observed groups 
regarding Technical Debt as measured by Sonar. 

 

In order to evaluate this two alternative hypothesis, we 
applied the Kruskall-Wallis H test. Table 2 presents the 
evaluation of the general assumptions of the selected statistical 
method. 

 

Assumption Evaluation 

The dependent 

variable is ordinal 

Yes, see section Hypothesis and 

variables 

The independent 

variable consists of 

two or more 

categorical groups 

Yes, these are represented by the 

coding technique (TDD, TL, ad hoc). 

There is 

independence of 

observation 

Assumed true. As part of the 

University policies, students’ 

exercises are checked for plagiarism. 

Table 2: General Assumptions for the Kruskall-Wallis H Test 
 

The remainder assumptions of the Kruskall-Wallis H Test  
are dependent on the data and are reviewed in each of the 
following subsections. 

1) Evaluation of H1f 
A Kruskall-Wallis H Test was run to determine if there 

were differences in the accrued technical debt as measured by 
Findbugs for TDD, TL, and ad hoc programming. The 
distributions for the accrued Technical Debt were not similar 
for all groups as visually assessed through box plots (see 
Figure 3). The distributions were statistically significant 
between groups with X2(2) = 10,991, p=0,004. 



 
Figure 3: Results of Findbugs Kruskall-Wallis H Test 

 
Despite not having statistical significance, an observation 

of the ranks hints that TL has more technical debt (47) than 
TDD (40), and finally ad hoc with 29. All values declared are 
mean ranks see Table 4. 

Group N Mean Rank 

Ad hoc 32 29 

TDD 12 39 

TL 32 47 

Table 3: Mean rank for Findbugs by group 

1) Evaluation of H1s 
 

A Kruskall-Wallis H Test was run to determine if there 
were differences in the accrued technical debt as measured by 
Sonar for TDD, TL, and Ad-hoc. The distributions for the 
accrued technical debt were not similar for all groups as 
visually assessed through box plots (see Figure 4). The 
distributions were statistically significant between groups with 
X2(2) = 53,403, p=0,000. 

 
Figure 4: Results of Sonar Kruskal-Wallis Test 

 

In spite of not having statistical significance, an 
observation of the ranks hints that TL has more technical debt 
(47) than TDD (40), and finally ad hoc with 29. All values 
declared are mean ranks see Table 4. 

Group N Mean Rank 

Ad hoc 32 17 

TDD 12 49 

TL 32 56 

Table 4: Mean rank for Sonar by group 

C. Other analysis 

In addition to the research objectives, there is the 

possibility to analyze if there is a relationship between the 

measures of technical debt provided by two different tools. To 

evaluate this relationship is important because both code 

analysis tools are used to measure technical debt in the 

literature (see Section VI.A). Therefore, it is expected that 

there is a monotonic relationship between them. 

 

A Spearman’s rho was applied to test for correlation among 

the variables. The results could not confirm a significant 

correlation between them (rho = 0,223). Figure 4 presents a 

scatter plot to observe that this linear correlation is not present 

in the data. The implication for technical debt research of this 

result is presented in the section IV.D). 

 

 



 
Figure 5: Sonar x Findbugs scatterplot 

IV. ANSWER TO RESEARCH QUESTIONS AND INTERPRETATION OF 

RESULTS AND 

Regarding the main objective of this research, to confirm 
that code produced using TDD had less technical debt than 
code produced using other techniques. This research could not 
support this hypothesis. In spite of the amount of participants 
involved in the observation (75 undergraduate students), the 
analysis did not yield statistically significant results. 

Nevertheless, it is interesting to note that ordering the 
techniques by the number of issues reported by both tools 
shields the same order (see Table 3 and Table 4) for the 
techniques. This is, ad-hoc produces fewer issues than TDD, 
which produces fewer issues this ad-hoc produces than Test 
last. This would hint at a relationship between the three 
techniques. Even more so, since the measures appear 
unrelated.  

The reported literature on quality improvement using TDD 
has mixed results (see Section Results from other comparisons 
involving TDD). Nonetheless, and evaluation of our research 
design shows that there are several confounding factors that 
must be taken into account when observing our results. 

A. Cognitive complexity of TDD 

Arguably, TDD is the most cognitively demanding the 
coding practice applied by the subjects of this empirical 
observation. Evidence of this is the comparatively low number 
of subjects that applied the technique (12 out of 75). Both 
TDD and TL subject received equal training, and yet only 12 
out of 44 decided to apply the technique in the final exercise 
of the course. 

No operationalization of the technique was required for the 
subjects. This lack of operationalization is the likely source of 
the spread of the results observed in the range of the issues 
detected by the measurement tools. Further research, must 
introduce an operationalization of the compared coding 
techniques in order to reduce variations, and increase 
confidence that the subjects are correctly applying the 
assigned technique. 

B. Error in the assignments of subjects groups (TDD and TL) 

As it was mentioned in section II.A, TDD and TL came 
from students taking the same course in a technical degree 
setting. Division into groups was based on the instructor 
judgment on the technique applied. The instructors judgment 
liable to selection bias and may be a source of the variation 
seen in the results. It is also a possible explanation for the lack 
of statistically significant results. 

C. Effect of code size on Technical Debt 

Another aspect that was not taken into account during data 
collection was the length of code involved in each group. It is 
likely that code also has an impact on the amount if issues 
identified by these tools. As code that is more sizable is likely 
to have more issues. We revisited the source code to add this 
data to the dataset; the summary is presented in Table 5 and 
Figure 6. 

 

Code 
Technique 

Number 
of Cases 

Median 
(LOC) 

Standard 
Deviation 

Ad hoc 32 58,5 178,8 

Test First 32 1153,5 904,4 

TDD 11 291 25,8 

Table 5: Summary of descriptive statistics for LOC of 

subjects' exercises 

 

 
Figure 6: Descriptive statistics for LOC 

 

Figure 6 show that ad hoc exercises have fewer LOC than 
TDD exercises. Moreover, that TDD exercises have less LOC 
than test first exercises. Which shields the same order than the 
observation of accrued technical debt (see section IV). Our 
experimental design prevents us from further analyzing this 
observation.  

D. Immaturity of Technical Debt measures 

Technical debt is a metaphor which has been successfully 
applied to understand events that occur during software 



development. For that matter when working with code 
technical debt, the de-facto standard is to use the static 
checking tools as a measure of technical debt. Nonetheless, 
our observation showed that there is not relationship – or at 
least not linear relationship – between the two measures of 
technical debt. 

In theory, they are both measuring the same attribute from 
the same entity. Both are tools for measuring Technical debt 
(attribute) from the entity source code. Therefore, a monotonic 
relation is to be expected of both measures. If an entity has 
more technical debt, this should be true regardless of the 
measurement scale. Nevertheless, our results could not 
confirm the existence of a monotonic relationship between the 
two measures (see Figure 4). This observation opens new 
research questions towards the validity of using these 
measures as a proxy for technical debt.  

 

V. THREATS TO VALIDITY 

This section discusses a set of threats to the validity [8] of the 

results discussed in this study. 

A. Statistical significance 

 The number of subjects per group was not balanced. 
However, care was taken in the application of the statistical 
tests (we abide by variable type restrictions and the 
assumptions of each of the applied statistical methods). Our 
results failed to show statistical significance for the test 
applied. Therefore, all conclusions are based on the 
researcher’s judgment – which is prone to a threat in 
generalization. 

B. Different goals between each group 

An aspect that can challenge the validity of the observation 
(construct validity) is that students involved in ad-hoc 
programming groups had different motivation that students 
involved in TDD or TL groups. 

On one hand, the students which we label as ACM were 
willingly participating in training seminars for the ACM 
programming contest. They are not graded for their exercises, 
and their main goal is to provide source code that fulfills the 
functional specification in the shortest time possible. 

On the other hand, students which we labeled as TDD or 
TL, were participating in a curricular course of their degree 
and were graded for the assignment of a source code 
programming exercise. 

C. Experimental design 

Throughout this paper, we have labeled this work as an 
empirical observation of the behavior of technical debt in 
undergraduate projects. The researchers had no control over 
the instrumentation or the assignments of subjects to groups. 
To make the results more definite, a different type of 
experimental design must be made to block several of the 
confounding factors that have been discussed in this paper. 

VI. RELATED WORK 

 

A. Measuring technical debt 

Technical debt research has become a stronghold for the 

development of empirical research in software engineering. 

This observation was consolidated in [2], where a summary of 

empirical results in technical debt research is presented. As a 

result, a driver of technical debt research has been the need to 

reliable measurements. According to the reviewed literature, 

most of the authors discussed methods to determine technical 

debt by analyzing the source code [3]. These approaches were 

based on the cohesion and coupling measurement among 

others code indicators of each component. To the best of our 

knowledge, Findbugs and Sonar are the most used ones in the 

literature.  

Other measures of technical debt have been proposed that 

do not rely on source code analysis. For instance in [9], Nord 

et al. describe an empirical model based on the cost of 

implementation and rework of alternative and conflicting 

architectural solutions.  

, in an ongoing system development project, by 

determining the propagation metric [10], no methodology was 

defined in order to manage and monitor the debt across the 

software development. 

Finally, Guo et al. [11] presented a general methodology, 

to deal with technical debt during the development life cycle. 

This framework defines three main activities that were 

executed during the whole SLDC phase, in order to create an 

incremental technical debt steps:  Identification, measurement 

and monitoring. It also suggests four elements as sources of 

technical debt: 

 Design debt: defined as any anomaly in the source 

code and/or documentation that could decrease the 

maintainability of the system. 

 Defect debt: known defects not yet fixed. 

 Testing debt: identified as planned tests that were not 

executed. 

 Documentation debt: when the product’s 

documentation is not up to date. 

Though the evidence of the application of these model 

relies on source code measures for technical debt. 

B. Overview of Development techniques 

Test Last programming, also known as Test-Last 
Development or TLD is a popular testing model, with 
developers focused on programming functionalities before 
testing them. It popularity can be related to waterfall software 
development model popularity where it was the only testing 
model that made sense (testing phase is the last one in the 
waterfall). 



Test Driven Development (acronym TDD) is a software 
development practice in which automated test cases are 
written before the functionality development [5]. It is 
considered part of the eXtreme Programming methodology 
[12] and a design flow paradigm with test cases acting as a 
starting point and central elements throughout the whole 
design process [13]. In TDD, test cases are specified first 
(challenging traditional way [14][15][16]), and, since no 
implementation is available, they will initially fail. Based on 
error messages from failing test cases, the implementation 
grows incrementally until all test cases pass eventually [17]. 

TDD technique not only encourages programmers to write 
code that can be easily tested but also requires an open mind 
and discipline. However, the test part of TDD name has lead 
to many misunderstandings (mostly in newcomers) due the 
belief that only implies testing and not analysis nor design. 
TDD development has a sharp learning curve. It requires 
advanced skills in order to be correctly implemented, because 
of how the paradigm forces developers to think and design test 
cases before implementing an unfamiliar functionality [18]. 

C. Results from other comparisons involving TDD 

In the last ten years, there have been several scientific 
studies on TDD. The very large quantity and maturity of 
results have made possible the realization of secondary studies 
(systematic reviews) [19][5][20]; which are a good way to 
summarize and interpret quantitative results of a collection of 
individual studies over a specific topic.  

Empirical studies on industrial and academic projects 
report improvements in quality, in some cases significant and 
in others not so much [5]. On external quality (perceived by 
the user as the satisfaction of use, flexibility and efficiency 
attributes) there are reports of simple improvements [21], 
some noticeable improvements or directly no improvement 
[19]. On the internal quality (how the code is developed, ease 
of correction, adaptation, and expansion), it is ensured that it 
increases [21]. On productivity, there are reports that range 
from indeterminate results [19] [21], that it worsens [22] and 
even that TDD improves productivity [23]. Regarding the 
impact on the development effort, the reports go from 
indeterminate results to improvements thanks to the use of 
TDD [5]. Finally, a survey of process improvement practices 
puts TDD as the second practice with the greatest impact on 
the success of a project (only after code inspection as the first 
one) [24]. All this lack of conclusive results and nuances about 
its uses are issues that still occupy many researchers. 

Like other empirical experiments, the validity of our 
results are based on a large set of subjects that were not 
randomly selected; they were aware that TDD and Testing-
Last must be applied. We hope that our focus on the 
comparison between both programming paradigms will assist 
others in order to get a better view on how the adopted 
technology incurs TD.  

VII. CONCLUSIONS 

Technical Debt is a metaphor for explaining events that 
happen during the development of software. TDD has proven 
a viable way to produce software, the hype around it signals 

that better quality and better readable software can be obtained 
when using these techniques [6]. Nonetheless, empirical 
studies of code quality resulting from applying TDD is 
ambiguous on the effects of the technique. This study provides 
another source of contrast since the expected quality 
improvement could not be observed from the data under study. 

This manuscript has presented an empirical evaluation of 
TDD, TL and ad hoc programming techniques. We reviewed 
source code from programming assignments from 75 different 
students. The goal of this work was to evaluate if code 
produced with TDD had fewer Technical Debt than code 
produced using TL and ad ho programming techniques. 

Technical Debt was measured using static code analysis 
tools (Sonar and Findbugs), which are standard tools for 
measuring Technical Debt in the community. 

Our results could not support the working hypothesis, as 
no statistically significant difference was found in the 
observed source code. Nonetheless, several interesting 
affirmation can be made: 

 In spite of not achieving statistical significance, the 
order in which the observed techniques produced 
Technical Debt remained the same in both 
measurement tools. The order is, from lowest to 
greatest: ad hoc  TDD  test last. 

 There is no significant linear relationship between the 
two measurement tools. 

As we have discussed, there are other confounding 
variables which our empirical study design cannot block in 
order to generalize the results. Specifically, training and 
motivation of the subjects in the evaluated techniques is a big 
source of variation in our study. In addition to this, our results 
show that code size is also a source of variation and it’s likely 
to have more effect on Technical Debt than coding technique. 

Future work needs to involve the study design to evaluate 
the research lines opened by this empirical observation. Static 
code analysis tools must be thoroughly studied in order to 
evaluate if they represent meaningful proxies for Technical 
Debt. In this study, we have only counted the total number of 
identified defects. Both tools classify the defects by severity. 
The analysis in this paper should be extended to accommodate 
for the severity of the identified defects. 

Furthermore, the observation of students needs to evolve to 
a controlled experiment design reducing the variation of 
confounding factors to better observe each technique. 
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VIII. APPENDIX –DATA SET 

 

Subject Technical Debt 

#FindBugs #Sonar 

TDD_Subject 3 1 53 

TDD_Subject 4 5 55 

TDD_Subject 5 1 159 

TDD_Subject 9 7 61 

TDD_Subject 11 6 78 

TDD_Subject 19 1 30 

TDD_Subject 20 1 119 

TDD_Subject 21 2 56 

TDD_Subject 43 3 41 

TDD_Subject 44 6 57 

TDD_Subject 45 3 70 

TDD_Subject 46 3 523 

Table 1: TDD 

 

Subject Technical Debt 

# FindBugs #Sonar 

TL_Subject 1 5 34 

TL_Subject 2 2 32 

TL_Subject 6 1 138 

TL_Subject 7 2 31 

TL_Subject 8 2 32 

TL_Subject 18 9 31 

TL_Subject 22 3 89 

TL_Subject 23 2 138 

TL_Subject 24 2 124 



TL_Subject 25 8 197 

TL_Subject 26 3 412 

TL_Subject 27 9 261 

TL_Subject 28 3 97 

TL_Subject 29 2 359 

TL_Subject 30 2 262 

TL_Subject 31 2 97 

TL_Subject 32 2 357 

TL_Subject 33 5 62 

TL_Subject 34 4 60 

TL_Subject 35 2 71 

TL_Subject 36 3 81 

TL_Subject 37 7 132 

TL_Subject 38 5 78 

TL_Subject 39 5 117 

TL_Subject 40 1 204 

TL_Subject 41 1 45 

TL_Subject 42 7 51 

TL_Subject 51 6 47 

TL_Subject 52 3 78 

TL_Subject 53 8 89 

TL_Subject 54 5 74 

TL_Subject 55 6 65 

Table 2:TL 

 

Subject Technical Debt 

# FindBugs #Sonar 

ACM_Subject 1 0 19 

ACM_Subject 2 0 18 

ACM_Subject 3 1 20 

ACM_Subject 5 1 27 

ACM_Subject 6 2 17 

ACM_Subject 7 0 35 

ACM_Subject 10 2 7 

ACM_Subject 11 1 29 

ACM_Subject 12 3 13 

ACM_Subject 13 3 16 

ACM_Subject 14 3 34 

ACM_Subject 15 4 10 

ACM_Subject 16 4 15 

ACM_Subject 17 1 11 

ACM_Subject 18 3 8 

ACM_Subject 19 1 13 

ACM_Subject 21 4 12 

ACM_Subject 22 3 9 

ACM_Subject 24 6 26 

ACM_Subject 25 2 7 

ACM_Subject 26 1 9 

ACM_Subject 27 2 12 

ACM_Subject 28 1 20 

ACM_Subject 29 2 15 

ACM_Subject 30 1 8 

ACM_Subject 31 3 8 

ACM_Subject 32 6 7 

ACM_Subject 33 2 10 

ACM_Subject 34 0 24 

ACM_Subject 35 1 23 

ACM_Subject 36 1 15 

ACM_Subject 37 2 6 

Table 3: ACM 
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