
Carolyn Seaman
University of Maryland Baltimore County

Fraunhofer Center for Experimental Software Engineering
Universidade Federal de Pernambuco

ESELAW 2013
Montevideo, Uruguay

10 April 2013

http://www.umbc.edu/umbcstyle/images/horiz.jpg

“It is only a little hyperbolic to call this a

watershed moment for empirical [software
engineering] study, where many areas of

progress are coming to a head at the same
time.”

Forrest Shull, Davide Falessi, Carolyn Seaman, Madeline Diep, and Lucas

Layman. “Technical Debt: Showing the Way for Better Transfer of Empirical
Results.” Forthcoming in “Future of Software Engineering” published in honor of

the 60th birthday of Prof. Dr. H. Dieter Rombach, 2013.

Thesis

2

 Introduction to the Technical Debt metaphor

 Contributing streams of research
 Evolution

 Current state

 Role in Technical Debt research

 A solution to our problems?
 Technology transfer

 Evolving the discipline

 Conclusion
 Call to action

 A watershed, indeed?

Outline

3

What is Technical Debt?

 Context: Software Maintenance
 Large inventory of operational systems that need to be

maintained
 Fixed
 Enhanced
 Adapted

 Such systems need constant modification in order to
remain useful

 Most such systems are too expensive to replace, so
considerable resources go into their maintenance

 However, maintenance, even more than development, is
characterized by tight budget and time constraints

4

Technical Debt

Technical Debt is the gap
between:
 Making a maintenance change

perfectly
 Preserving architectural design

 Employing good programming
practices and standards

 Updating the documentation

 Testing thoroughly

 And making the change work
 As quickly as possible

 With as few resources as possible

5

Everyday Indicators of Technical
Debt

“ToDo/FixMe: this should be fixed before release”

“I know if I touch that code everything else breaks!”

“The only one who can change this code is Carl”

“Does anybody know where we store the database access password?”

“It’s ok for now but we’ll refactor it later!”

“The release is coming up, so just get it done!”

“Let’s just copy and paste this part.”

“Let’s finish the testing in the next release.”

“Don’t worry about the documentation for now.”

6

Technical Debt
Metaphor

 A metaphor, NOT a theory or a scientific concept

 Definition
 Incomplete, immature, or inadequate artifact in the software

development lifecycle (Cunningham, 1992)

 Aspects of the software we know are wrong, but don’t have
time to fix now

 Tasks that were left undone, but that run a risk of causing
future problems if not completed

 Benefits
 Higher software productivity in the current release

 Lower cost of current release

 Costs
 “Interest” – increased maintenance costs

 Risk that the debt gets out of control
7

 Different types of Technical Debt
 Design debt
 Testing debt
 Defect debt
 Others…

 Some debt is easy to find, some is not
 Easy:
 Test cases that weren’t run
 Defects found but not fixed
 Classes that everyone knows are a mess

 Hard:
 Code that gradually decays over time
 Breakdown of design patterns
 Code that is so complex only one person ever works with it

Technical Debt Identification

8

Research on Identifying
Design Debt

ASA issues
(line level)

Code smells
(method and class level)

Grime
(class interaction level)

Modularity violations
(architecture level)

 9

Research on Identifying
Important Debt

 Which is better at finding the most important debt, tools or people?
 Asked developers to manually report TD items
 “If you had a week to do nothing but improve the maintainability of

the software product, what would you work on?”

 Ran ASA, code smell detection, and metrics tools
 Are developers concerned about the same sorts of technical debt

that is found and reported by tools?
 Answer: Yes and no

 Details
 Analysis tools found most of the modules that had developer-

identified defect debt and about half of the modules that had
developer-identified design debt.

 But the tools also found lots of problems in modules that the
developers did not care about

 Not surprisingly, the tools could not find testing or documentation
debt, although developers found these types of debt important

10

 Managing Technical Debt, once it is identified, includes:
 Evaluating principal and interest

 Monitoring changes in debt (individual and collective)

 Making decisions about debt

 Simplest possible approach: cost-benefit analysis
 Principal = cost of paying off an instance of debt

 Interest = benefit of paying off an instance of debt

 Pay off the debt whose interest outweighs the principal

 Too simple
 Lots of simplifying assumptions

 A good place to start

Technical Debt Management

11

 Several ongoing case studies

 Retrospective studies

 Use historical data to simulate various decision outcomes

 Calculate the benefits of making decisions based on
information about Technical Debt

 Live studies

 Projects try the simple approach

 We collect data on effort and problems

 Determine the costs of explicitly managing Technical Debt

 Determine where the approach is too simple

12

Research on Technical
Debt Management

Open Research Questions

13

How can source code analysis tools
be used to help estimate principal

and interest?

Should we rely on expert opinion
to determine which types of

technical debt are important? How aware are developers of the
technical debt in their software?

What context factors mediate the
relationship between the type of

technical debt and its impact?

Which types of technical debt have
the highest interest?

How precise do estimates of
principal and interest need to be in

order to effectively support
decision making?

How should technical debt
information be presented to

decision makers?

What other non-financial factors
should be taken into account when
deciding whether or not to pay off

technical debt?

How do developers and managers
view technical debt?

Do the source code analysis tools
we have all detect technical debt in

the same places?

Do the source code analysis tools
we have all detect similar sorts of

technical debt?

Which types of source code
anomalies actually lead to

increased maintenance costs?

Is it cost-effective to explicitly
manage technical debt, or is the

current implicit approach
sufficient?

How difficult and expensive is it
to explicitly document and manage

technical debt?

Can money be saved in the long
run by making better decisions
about paying off technical debt?

 Software aging and decay

Risk management

Qualitative methods and appreciation for
context

 Software metrics

 Program analysis

 Software quality

Contributing Streams of
Research

14

 Foundational

 Technical Debt is in some ways just a restatement of these ideas

 Another metaphor

 Like human aging

 Changing the software becomes harder as it evolves

 Results

 Inability to keep up

 Reduced performance

 Decreased quality

 Lehman’s Law of Increasing Complexity:

 Complexity increases unless work is done to maintain or
reduce it

Software Aging and
Decay

Lehman and Belady, 1985
Parnas, 1994

15

Also foundational
 Instances of Technical Debt constitute one type of

software risk

Risk Management cycle (identify, assess, manage)
provides a template for managing Technical Debt

Risk Assessment approaches (e.g., Risk exposure
analysis) provides ways to quantifying Technical
Debt

Concept of utility loss provides a way to characterize
the interest on Technical Debt

16

Risk Management

Stonebumer et al., 2002
Boehm, 1991

17

The Evolution of Qualitative
Methods in SWE

Qualitative
methods non-

existent in
software

engineering
research

First
published

studies

Era of political
correctness –
special issues

Qualitative
methods

accepted and
widespread

1998 2000’s 2013

Seaman, 1998
Dyba et al., 2011
Dittrich et al., 2007

 Empirical software engineering researchers can now add

a host of qualitative methods to their empirical toolkit

 Many good examples of qualitative studies are available
in the literature (e.g. in special issues)

 Many experts who are highly experienced

 Starting to look at qualitative synthesis of studies (e.g. in
the context of SLRs)

 Bottom line: We now have the tools and expertise
available to fully investigate questions of human behavior
and context

18

Current State of Qualitative
Methods in SWE Research

 Technical Debt related concepts are context-specific

 A project’s Technical Debt strategy should be based on
goals and “pain points”

 Context factors can be elicited in a number of ways

 We need qualitative methods to ensure capture of all
relevant factors

 Qualitative work in Technical Debt research one of the
reasons for its relevance to practice

 Bottom line: We can’t study TD properly without
qualitative methods, and until recently we didn’t as a
community know how to use qualitative methods
effectively

19

Qualitative Methods and
Context in TD Research

Lim et al., 2012

20

The Evolution of Software
Metrics

Early
complexity

metrics

Institution of
metrics

programs

Visualization
and

dashboards

Modern
development
environments

and tools

1990’s 2000’s 2010’s

McCabe, 1976
Halstead, 1970
Basili et al., 1994
Gaudin, 2009

Schumacher et al., 2010
Bohnet and Döllner, 2011
Snipes et al., 2011

1970’s

Adoption of software metrics in industry is still

spotty
 Especially in small and medium organizations

Many large development organizations are “data-
rich” environments

Metrics no longer have to be “added on” at the end
of the process – better integration is possible

Bottom line: Tools are available to integrate data
collection, analysis, and visualization into the
software development process

21

Current State of
Software Metrics

 The relationship between software metrics and Technical

Debt is complex and subject to further research

 Not evident that modules with “worse” indicators have
“real” debt

 Code smell definitions try to get at the complicated
relationship

 In practice, TD management often begins with monitoring
metrics

 Bottom line: Simple views of metrics are not sufficient;
we need easy ways to combine and visualize custom-fit
combinations and relationships between different metrics

22

Software Metrics and
Technical Debt

23

The Evolution of Program
Analysis

Control and
data flow
analysis

Principles of
OO design

Automation of
anomaly
detection;

code smells

Modern
development
environments

and tools

1980’s 2000’s 2010’s

Kildall, 1973
Jones, 1981
Rentsch, 1982
Booch, 1986

Ball and Rajamani, 2002
Munro, 2005
Bohnet and Döllner, 2011
Snipes et al., 2011

1970’s

A plethora of tools available

 Easy to use

 Some cases in which program analysis is integrated
into the build process

 Even quantitative thresholds for an acceptable number
of “issues”

Generate mountains of information

Bottom line: the challenge is to make sense of the
analysis results – what’s important?

24

Current State of
Program Analysis

 Like software metrics, the relationship between program

analysis and Technical Debt is complex
 Anomaly detection through program analysis (e.g. code

smells, ASA “warnings”, etc.)
 Not clear what anomalies constitute debt
 Tools don’t usually convey information about the value or

importance of the anomaly

 Program analysis provides the building blocks for
techniques that look at higher-level (e.g. architectural)
issues

 Bottom line: Modern program analysis techniques
provide tools only facilitate identification of debt, they
need more support to identify and evaluate instances of
“real” debt

25

Program Analysis and
Technical Debt

26

The Evolution of Software
Quality

Quality equals
no defects

Recognition of
the “ilities”

Value-based
software

engineering

Quality is
contextual

1970’s 2000’s

Rubey &Hartwick, 1968
Boehm, 1973
Biffl et al., 2005

Organizations still struggle to define quality in a

meaningful way

Maturity of understanding of quality varies

Organizations who manage quality successfully have
tied their quality indicators to business goals and
desired outcomes

Bottom line: Quality management is goal-driven

27

Current State of
Software Quality

 Technical Debt is primarily concerned with the

maintainability aspect of quality

 But most other “ilities” feed into maintainability

 The debt-related concepts of principal and interest are
directly tied to the idea of value

 The idea that quality contributes to value, not just function

 Bottom line: We now understand that quality means
different things in different times and places, and it is this
understanding that is crucial for the study of Technical
Debt

28

Software Quality and
Technical Debt

 Empirical Software Engineering and Measurement

(ESEM 2013)

 Baltimore, Maryland, USA

 October 10-11, 2013

 Short papers and posters deadline: June 11

Co-located workshop: Managing Technical Debt

 October 9, 2013

 Working session to coordinate research in this area

29

Commercial Break

30

Persistent Problems in Empirical
Software Engineering

Evolution of the
Discipline

 Too few empirical software engineering researchers

get to see their ideas put into practice

Our research too often does not start from a real
problem or a real context

Our research too often is described in terms that are
not relevant for practitioners

We’re not good salespeople

Requirements of publication and practice are not
always in harmony

31

Technology Transfer

 The Technical Debt metaphor
 Gives us a vocabulary that both researchers and

practitioners understand

 Is a problem that practitioners care about

 Forces researchers to view the problem from a practice
point of view

Applying Technical Debt research in practice starts
with identifying the project’s sources of “pain”

 Thus, research in this area by necessity is grounded
in practice

32

Technology Transfer
and Technical Debt

 Software engineering research has long suffered from an

inability to build on previous results

 Too often suffers from a lack of grounding in prior
literature

 Previous slides show successes in individual areas

 But we need to get better at

 applying findings in one area to solve problems in another

 combining diverse solutions to address a multi-faceted
problem

 see the relationships between different areas

33

Evolution of the
Discipline

 Technical Debt is a multi-faceted problem

 Addressing it effectively in practice relies on solutions
from:
 Software evolution

 Risk Management

 Qualitative assessment of context

 Software metrics

 Program analysis

 Software quality

 Here’s our chance to appreciate and use results from
outside our own corners of the field

34

Evolution of SWE and
Technical Debt

 Technical Debt
 Is a metaphor that describes a real problem in software

engineering practice

 Requires solutions from a variety of different areas in
empirical software engineering that have evolved over
the last few decades

 Requires solutions that are only now possible because
of the level of evolution of these contributing areas

 Provides the potential for addressing some long-term
problems in the empirical software engineering
research community

35

Recap

Do more research on Technical Debt, BUT
 Don’t lose the industry focus

 Keep talking to practitioners

 Learn the vocabulary

 Listen to where the pain is

 Don’t reinvent the wheel

 Read the literature

 Adapt solutions

 Collaborate

36

Call to Action

 Are we at a historical moment in
empirical software engineering research?

 Will everything be fundamentally
different from now on?

 We have the right problem, we have a
history of research providing at least the
beginnings of the right solutions.

 It could be….
37

“Watershed”?

“It is only a little hyperbolic to call this a watershed
moment for empirical [software engineering] study,
where many areas of progress are coming to a head

at the same time.”

Questions?

38

Thank you!

References I
 Lehman, M. M. & Belady, L. A. (1985). Program Evolution: Processes of Software Change. Academic

Press Professional Inc.
 Parnas, D. L. (1994). Software aging. Proceedings of 16th International Conference on Software Engineering

(pp. 279–287). IEEE Comput. Soc.
 Stoneburner, G., Goguen and A., Feringa, A. (2002). Risk Management Guide for Information

Technology Systems. National Institute of Standards and Technology (SP800-30).
 Boehm, B. W. (1991). Software Risk Management: Principles and Practices. IEEE Software (Issue 1, vol.

8, pp. 32-41).
 Seaman, C.B. (1999). Qualitative methods in empirical studies of software engineering. IEEE

Transactions on Software Engineering (vol. 25, no. 4, pp. 557-572)
 Dittrich, Y., John, M., Singer, J. and Tessem, B. (2007). For the Special issue on Qualitative Software

Engineering Research. Information and Software Technology (vol. 49, no. 6, pp. 531–539).
 Dybå, T., Prikladnicki, R., Rönkkö, K., Seaman, C. and Sillito, J. (2011). Qualitative research in software

engineering. Empirical Software Engineering (vol. 16, no. 4, pp. 425–429).
 McCabe, T. J. (1976) A complexity measure. IEEE Transaction on Software Engineering (vol. SE-2, pp.

308 -320).
 Halstead, M.H. (1977) Elements of Software Science. Elsevier.
 Basili, V., Caldeira, G. and Rombach, H. D. (1994) The Goal Question Metric Approach. Encyclopedia of

Software Engineering. Wiley.
 Schumacher, J., Zazworka, N., Shull, F., Seaman, C., Shaw, F. (2010). Building empirical support for

automated code smell detection. Proceedings of the 4th International Symposium on Empirical Software
Engineering and Measurement (pp. 1-10).

 Gaudin, O. (2009). Evaluate your technical debt with Sonar. Retrieved from
http://www.sonarsource.org/evaluate-your-technical-debt-with-sonar.

39

References II
 Bohnet, J. and Döllner, J. (2011). Monitoring code quality and development activity by software

maps. Proceedings of the 2nd Workshop on Managing Technical Debt (pp. 9-16).
 Snipes, W., Robinson, B. and Murphy-Hill, E. (2011). Code Hot Spot: A tool for extraction and

analysis of code change history. Proceedings of the 27th International Conference on Software
Maintenance (pp. 392-401).

 Kildall, G. A. (1973). A unified approach to global program optimization. Proceedings of the 1st
Annual Symposium on Principles of Programming languages (pp. 194-206).

 Jones, N. D. (1981). Flow analysis of lambda expressions. Automata, Languages and Programming
(vol. 115, pp. 114-128).

 Rentsch, T. (1982). Object oriented programming. SIGPLAN Not (vol. 17, no. 9, pp. 51-57).
 Booch, G. (1986). Object-Oriented Development. IEEE Transactions on Software Engineering (vol.

SE-12, no. 2, pp. 211-221).
 Ball, T. and Rajamani, K. S. (2002). The SLAM Project: Debugging System Software via Static

Analysis. SIGPLAN Not (vol. 37, no.1, pp. 1-3)
 Munro, M. J. (2005). Product Metrics for Automatic Identification of "Bad Smell" Design

Problems in Java Source Code. The 11th International Symposium Software Metrics, 2005 (pp15).
 Rubey, R. J. and Hartwick, R. D. (1968). Quantitative measurement of program quality.

Proceedings of the 23rd ACM national conference (pp. 671-677).
 Boehm, B. W., Brown, J. R., H. Kaspar, H., Lipow, M., MacLeod, G. J. and Merritt, M. J. (1973).

Characteristics of Software Quality. TRW Software Series (TRW-SS-73-09).
 Stefan Biffl , Aybüke Aurum , Barry Boehm , Hakan Erdogmus , Paul Grünbacher, Value-Based

Software Engineering, Springer-Verlag New York, Inc., Secaucus, NJ, 2005.
40

