e

tu

= putline _ gersin
given

behave

wap e a

behavior

Table Of Contents

'« BDD pracciss
« Outside—in

» Programmerdomain examples

and behavior

« Acknowdedzement

Related Topics

Quick search

Go

Enter search teems or 8 moduls, class or

functicn name

Behavior Driven Development

Behaviordriven development (or BDD) is an agile software development technique that
encourages collaboration between developers, QA and non-techaical or business participants in a

software project. It was originally named in 2003 by Da a3 a response to testdriven

development (TDD), including acceptance test or customer test driven development practices as

found in extreme programming. [t has evolved over the last few years.

On the “Agile specifications, BDD and Testing eXchange” in November 2009 in Londen, Dan
North zave the followine definition of BDD:

BDD is a second-generation, cutside-in, pullbased, multplestakeholder, muldiplescale, high-
automation, agile methodoloey. I describes a cycle of interactions with well defined ourpurs,
zesulting in the delivery of working, tested software that marrers.

BDD focuses on obtaining a clear understanding of desired software behavior through discussion
with stakeholdess. It extends TDD by weiting test cases in a natural language that non-
programmers can read. Behavior-driven developers use their native language in combination with
the ubiguitous laneuagze of domain-driven desien to describe the purpose and benefit of their
code. This allows the developers to focus on why the code should be created, rather than the
technical details, and minimizes translation between the technical language in which the code is
written and the domain languace spoken by the business, users, stakehelders, project

management, etc.

BDD practices

The practices of BDD include:

Establishing the goals of different stakeholders required for a vision to be implemented

Drawing out features which will achieve those goals using feature injection

Involving stakeholders in the implementation process through outside-in sofrware

development

Using examples to describe the behavior of the application, or of units of code

Automating those examples to provide quick feedback and regression testing

Using ‘should’ when describing the behavior of software to help clarify responsibility and
allow the software’s functionality to be questioned
* Using ‘ensure’ when describing responsibilities of software to differentiate outcomes in the

scope of the code in question from side-effects of other elements of code.

Using mocks to stand-in for collaborating modules of code which have not yet been written

Outside—1n

BDD is driven by business value; chat is, the benefit to the business which accrues once the

application is in production. The enly way in which this benefit can be realized is through the user

interface(s) to the applicarion, usually (but nor always) a GUL

In the same way, each piece of code, starting with the Ul, can be considered a stakeholder of the
other modules of code which it uses. Each element of code provides some aspect of behavior

which, in collaboration with the other elements, provides the applicaton behavior.

The first piece of production code that BDD developers implement is the UL Developers can then
benefit from quick feedback as to whether the Ul looks and behaves appropriately, Through code,
and using principles of good design and refactoring, developers discover collaborators of the Ul,
and of every unit of code thereafter, This helps them adhere to the principle of YAGNI, since
each piece of production code is required either by the business, or by another piece of code
already written,

The Gherkin language

The requirements of a retail application might be, “Refunded or exchanged items should be
returned to stock,” In BDD, a developer or QA engineer might clarify the requirements by
breaking this down into specific examples, The language of the examples below is called Gherkin
and is used behave as well as many other tools.

Scenario: Refunded items should be returned to stock
Given a customer previously bought a black sweater from me
and I currently have three black sweaters left in stock.
When he returns the sweater for a refund
then I should have four black sweaters in stock.,

Scenario: Replaced items should be returned to stock
Given that a customer buys a blue garment
and I have two blue garments in stock
and three black garments in stock.
when he returns the garment for a replacement in black,
then I should have three blue garments in stock
and two black garments in stock.

Each scenario is an exemplar, designed to illustrate a specific aspect of behavior of the application.

When discussing the scenarios, participants question whether the outcomes described always

result from those events occurring in the given context. This can help to uncover further scenarios

which elarify the requirements. For instance, a domain expert noticing that refunded items are not

always returned to stock might reword the requirements as “Refunded or replaced items should be

returned to stock, unless fauley.”.

This in turn helps participants to pin down the scope of requirements, which leads to better

estimates of how long those requirements will take to implement.

The words Given, When and Then are often used to help drive out the scenarios, but are not

mandated.

These scenarios can also be automated, if an appropriate tool exists to allow automation at the Ul
level. If no such tool exists then it may be possible to automate at the next level in, i.e. if an MVC

design pattern has been used, the level of the Controller.

Programmer-domain examples and behavior

The same principles of examples, using contexts, events and outcomes are used to drive
development at the level of abstraction of the programmer, as opposed to the business level. For

instance, the following examples describe an aspect of behavior of a list:

Scenario: New lists are empty
Given a new list
then the list should be empty.

Scenario: Lists with things in them are not empty.
Given a new list
when we add an object
then the list should not be empty.

Both these examples are required to describe the boolean narture of a list in Python and to derive
the benefit of the nature. These examples are usually automated using TDD frameworks. In BDD
these examples are often encapsulated in a single method, with the name of the method being a
complete description of the behavior. Both examples are required for the code to be valuable, and

encapsulating them in this way malees it easy to question, remove or change the behavior.

For instance as unit tests, the above examples might become:

class TestList(object):
def test_empty_list_is_false(self):
list = []
assertEqual(bool(list), False)

def test_populated_list_is_true(self):
list = []
list.append("item")
assertEqual(bool(list), True)

Sometimes the difference between the context, events and outcomes is made more explicit. For

instance:

class TestWindow(object):
def test_window_close(self):
given
window = gui.Window("My Window")
frame = gui.Frame(window)

When
window.close()

Then
assert_(not frame.isvisible())

However the example is phrased, the effect describes the behavior of the code in guestion. For
instance, from the examples above one can derive:

o lists should know when they are empty
» window.close() should cause contents to stop being visible

The description is intended to be useful if the test fails, and to provide documentation of the
code’s behavior, Once the examples have been written they are then run and the code
implemented to make them work in the same way as TDD. The examples then become part of the
suite of regression tests,

Using mocks

BDD proponents claim that the use of “should” and “ensureThat" in BDD examples encourages
developers to question whether the responsibilities they're assigning to their classes are
appropriate, or whether they can be delegated or moved to another class entirely, Practitioners use
an object which is simpler than the ing code, and provides the same interface but more
predictable behavior, This is tnjected into the code which needs it, and examples of that code’s

11k

behavior are written using this object instead of the production version,

These objects can either be created by hand, or created using a mocking framework such as ;

Questioning responsibilities in this way, and using mocks to fulfill the required roles of
collaborating classes, encourages the use of Role-based Interfaces, It also helps to keep the classes
small and loosely coupled.

Acknowledgement

This text is partially taken from the wikipedia text on Behavior Driven Development with
modifications where appropriate to be more specific to behave and Python,

® Copyright 20122014, Benaio Rice, Richard Jones and Jens Engel

